Abstract

Doppler velocity logger (DVL) error parameters can significantly influence the navigation accuracy of DVL/strapdown inertial navigation system (SINS) integration for unmanned underwater vehicles (UUV). To improve the navigation accuracy of UUV, this study proposes a two-stage DVL calibration method aided by global navigation satellite system (GNSS) measurements. First, utilizing the velocity of GNSS/SINS integrated navigation, the scale factor error of DVL is calculated by the moduli of velocities in UUV body frame and DVL instrument frame. Then, using the measurements throughout the calibration process, the calibration problem of the installation angle is converted to a nonlinear constraint optimization problem by describing the angle as a unit quaternion. Moreover, an easy-to-implement quaternion estimation algorithm is chosen to solve the problem and obtain the optimal quaternion. Simulation and sea trial indicate that the proposed method can rapidly and accurately estimate the DVL error parameters in different scenarios, and the position accuracy of the DVL/SINS system is improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.