Abstract

The authors developed and tested a multiprobe-based resonance-frequency-based electrical impedance spectroscopy (REIS) system. The purpose of this study was to preliminarily assess the performance of this system in classifying younger women into two groups, those ultimately recommended for biopsy during imaging-based diagnostic workups that followed screening and those rated as negative during mammography. A seven probe-based REIS system was designed, assembled, and is currently being tested in the breast imaging facility. During an examination, contact is made with the nipple and six concentric points on the breast skin. For each measurement channel between the center probe and one of the six external probes, a set of electrical impedance spectroscopy (EIS) signal sweeps is performed and signal outputs ranging from 200 to 800 kHz at 5 kHz interval are recorded. An initial subset of 174 examinations from an ongoing prospective clinical study was selected for this preliminary analysis. An initial set of 35 features, 33 of which represented the corresponding EIS signal differences between the left and right breasts, was established. A Gaussian mixture model (GMM) classifier was developed to differentiate between "positive" (biopsy recommended) cases and "negative" (nonbiopsy) cases. Selecting an optimal feature set was performed using genetic algorithms with an area under a receiver operating characteristic curve (AUC) as the fitness criterion. The recorded EIS signal sweeps showed that, in general, negative (nonbiopsy) examinations have a higher level of electrical impedance symmetry between the two breasts than positive (biopsy) examinations. Fourteen features were selected by genetic algorithm and used in the optimized GMM classifier. Using a leave-one-case-out test, the GMM classifier yielded a performance level of AUC = 0.78, which compared favorably to other three widely used classifiers including support vector machine, classification tree, and linear discriminant analysis. These results also suggest that the REIS signal based GMM classifier could be used as a prescreening tool to correctly identify a fraction of younger women at higher risk of developing breast cancer (i.e., 47% sensitivity at 90% specificity). The study confirms that asymmetry in electrical impedance characteristics between two breasts provides valuable information regarding the presence of a developing breast abnormality; hence, REIS data may be useful in classifying younger women into two groups of "average" and "significantly higher than average" risk of having or developing a breast abnormality that would ultimately result in a later imaging-based recommendation for biopsy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call