Abstract

Transcription factor NF-kappaB is generally considered to be a heterodimer with two subunits, p50 and p65. The p50 subunit has been suggested to be generated from its precursor, p105, via the ubiquitin-proteasome pathway. During processing, the C-terminal portion of p105 is rapidly degraded whereas the N-terminal portion (p50) is left intact. We report here that a 23-amino-acid, glycine-rich region (GRR) in p105 functions as a processing signal for the generation of p50. A GRR-dependent endoproteolytic cleavage downstream of the GRR releases p50 from p105, and this cleavage does not require any specific downstream sequences. p50 can be generated from chimeric precursor p105N-GRR-IkappaBalpha, while the C-terminal portion (IkappaBalpha) can also be recovered, suggesting that p105 processing includes two steps: a GRR-dependent endoproteolytic cleavage and the subsequent degradation of the C-terminal portion. We have also demonstrated that the GRR can direct a similar processing event when it is inserted into a protein unrelated to the NF-kappaB family and that it is therefore an independent signal for processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.