Abstract

Despite significant efforts in the development of noninvasive blood glucose (BG) monitoring solutions, delivering an accurate, real-time BG measurement remains challenging. We sought to address this by using a novel radiofrequency (RF) glucose sensor to noninvasively classify glycemic status. The study included 31 participants aged 18-65 with prediabetes or type 2 diabetes and no other significant medical history. During control sessions and oral glucose tolerance test sessions, data were collected from both a RF sensor that rapidly scans thousands of frequencies and concurrently from a venous blood draw measured with an US Food and Drug Administration (FDA)-cleared glucose hospital meter system to create paired observations. We trained a time series forest machine learning model on 80% of the paired observations and reported results from applying the model to the remaining 20%. Our findings show that the model correctly classified glycemic status 93.37% of the time as high, normal, or low.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.