Abstract
We extend Turaev's theory of Euler structures and torsion invariants on 3-manifolds to the case of vector fields having generic behavior on the boundary. This allows to easily define gluings of Euler structures and to develop a completely general gluing formula for Reidemeister torsion of 3-manifolds. Lastly, we describe a combinatorial presentation of Euler structures via stream-spines, as a tool to effectively compute torsion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.