Abstract

The problem of constraint stabilization and numerical integration for differential-algebraic systems is addressed using Lyapunov theory. It is observed that the application of stabilization methods which rely on a linear feedback mechanism to nonlinear systems may result in trajectories with finite escape time. To overcome this problem, we propose a method based on a nonlinear stabilization mechanism that guarantees the global existence and convergence of the solutions. Discretization schemes, which preserve the properties of the method, are also presented. The results are illustrated by means of the numerical integration of a slider-crank mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.