Abstract

The “quantum duality principle” states that a quantisation of a Lie bialgebra provides also a quantisation of the dual formal Poisson group and, conversely, a quantisation of a formal Poisson group yields a quantisation of the dual Lie bialgebra as well. We extend this to a much more general result: namely, for any principal ideal domainR and for each primepeR we establish an “inner” Galois’ correspondence on the categoryHA of torsionless Hopf algebras overR, using two functors (fromHA to itself) such that the image of the first and the second is the full subcategory of those Hopf algebras which are commutative and cocommutative, modulop, respectively (i.e., they are“quantum function algebras” (=QFA) and“quantum universal enveloping algebras” (=QUEA), atp, respectively). In particular we provide a machine to get two quantum groups — a QFA and a QUEA — out of any Hopf algebraH over a fieldk: apply the functors tok[ν] ⊗k H forp=ν. A relevant example occurring in quantum electro-dynamics is studied in some detail.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.