Abstract
Consider n identical Kuramoto oscillators on a random graph. Specifically, consider Erdős-Rényi random graphs in which any two oscillators are bidirectionally coupled with unit strength, independently and at random, with probability 0 ≤ p ≤ 1. We say that a network is globally synchronizing if the oscillators converge to the all-in-phase synchronous state for almost all initial conditions. Is there a critical threshold for p above which global synchrony is extremely likely but below which it is extremely rare? It is suspected that a critical threshold exists and is close to the so-called connectivity threshold, namely, p ∼ log ( n ) / n for n ≫ 1. Ling, Xu, and Bandeira made the first progress toward proving a result in this direction: they showed that if p ≫ log ( n ) / n, then Erdős-Rényi networks of Kuramoto oscillators are globally synchronizing with high probability as n → ∞. Here, we improve that result by showing that p ≫ log ( n ) / n suffices. Our estimates are explicit: for example, we can say that there is more than a 99.9996 % chance that a random network with n = 10 and p > 0.011 17 is globally synchronizing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chaos: An Interdisciplinary Journal of Nonlinear Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.