Abstract

In this study, a global soot formation model based on the LSP (Laminar Smoke Point) concept in combination with the soot oxidation model developed by Leung et al. [40] is validated in three laminar flames: a non-smoking and a smoking ethylene flame, as well as a non-smoking propane flame, and then applied in two turbulent pool fires fueled by ethylene and methane, respectively. In this global soot model, the sooting propensities of different fuels are accounted for by a pre-exponential factor determined from the LSP height, providing a general and practical solution for soot modeling in multi-fueled fires. The flame fields are solved by FLUENT with UDFs to provide material properties and add additional soot governing equations. A-CSE (Alternative Conditional Source-term Estimation) approach is adopted to handle the interaction between soot chemistry and turbulent flow in the turbulent fires. The model parameters such as the pre-exponential factor, soot inception limits and soot particulate surface area are determined and calibrated against the experimental data. Mixture fraction and temperature are first verified to provide a good premise for soot modeling. Good agreements between the predicted and measured soot volume fraction, as well as the reproduction of transition from non-smoking to smoking flames, demonstrate the capability of current global soot model in accurately predicting soot for both laminar flames and turbulent fires. Using the A-CSE soot modeling approach together with the global soot model, this study presents a general effective yet computationally efficient global soot modeling framework for fires.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.