Abstract

Abstract The fluid dynamics planet Saturn gives rise to alternating east–west jet streams, large cyclonic and anticyclonic vortices, and a dipole-dominant magnetic field that is highly axisymmetric about the planetary rotation axis. Modeling these features in a self-consistent manner is crucial for understanding the dynamics of Saturn’s interior and atmosphere. Here we report a turbulent high-resolution dynamo simulation in a spherical shell that produces these features simultaneously for the first time. A crucial model ingredient is a long-hypothesized stably stratified layer (SSL), sandwiched between a deep metallic hydrogen layer and an outer low-conductivity molecular layer, born out of the limited solubility of helium inside metallic hydrogen at certain depths. The model spontaneously produces polar cyclones and significant low-latitude and midlatitude jet stream activity in the molecular layer. The off-equatorial low-latitude jet streams partially penetrate into the SSL and interact with the magnetic field. This helps to axisymmetrize the magnetic field about the rotation axis and convert some of the poloidal magnetic field to a toroidal field, which appears as two global magnetic energy rings surrounding the deeper dynamo region. The simulation also mimics a distinctive dip in the fifth spherical harmonic in Saturn’s magnetic energy spectrum as inferred from the Cassini Grand Finale measurements. Our model highlights the role of an SSL in shaping the fluid dynamical and magnetic features of giant planets, as exemplified at Saturn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.