Abstract

The European Centre for Medium-range Weather Forecasts (ECMWF) brightness will use temperatures from the soil moisture and ocean salinity mission to analyze root zone soil moisture through a variational data assimilation system. The first guess is obtained from numerical weather prediction (NWP) model fields, an auxiliary database, and a land surface microwave emission model. In this paper, we present the community microwave emission model and research the first-guess errors in L-band brightness temperatures. An error propagation study is performed on errors introduced through: (1) uncertainties in the parameterizations of the radiative transfer model; (2) auxiliary geophysical quantities for the radiative transfer computations; and (3) an imperfect NWP model. It is found that the vegetation and dielectric models introduce uncertainties with a difference of up to 25 K between models. However, the biggest error in brightness temperature is likely related to the use of an auxiliary vegetation database, which results in differences of -20 to +20 K in our simulations. These potential errors are in many regions higher than the variance in brightness temperatures related to an imperfect NWP model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.