Abstract
This paper describes the development of an exact allocation-based solution algorithm for the facility location and capacity acquisition problem (LCAP) on a line with dense demand data. Initially, the n-facility problem on a line is studied and formulated as a dynamic programming model in the allocation decision space. Next, we cast this dynamic programming formulation as a two-point boundary value problem and provide conditions for the existence and uniqueness of solutions. We derive sufficient conditions for non-empty service regions and necessary conditions for interior facility locations. We develop an efficient exact shooting algorithm to solve the problem as an initial value problem and illustrate on an example. A computational study is conducted to study the effect of demand density and other problem parameters on the solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.