Abstract
ABSTRACTObservational analysis shows that there is a predominant global-scale multidecadal variability (GMV) of sea-surface temperature (SST). Its horizontal pattern resembles that of the interdecadal Pacific oscillation (IPO) in the Pacific and the Atlantic multidecadal oscillation (AMO) in the Atlantic Ocean, which could affect global precipitation and temperature over the globe. Here, we demonstrate that the GMV could be driven by the AMO through atmospheric teleconnections and atmosphere–ocean coupling processes. Observations reveal a strong negative correlation when AMO leads GMV by approximately 4–8 years. Pacemaker experiments using a climate model driven by observed AMO signals reveal that the tropical Atlantic warm SST anomalies of AMO initiate anomalous cooling in the equatorial central-eastern Pacific through atmospheric teleconnections. Anticyclonic anomalies in the North and South Pacific induce equatorward winds along the coasts of North and South America, contributing to further cooling. The upper-ocean dynamics plays a minor role in GMV formation but contributes to a delayed response of the IPO to the AMO forcing. The possible impact of the GMV on AMO was also tested by prescribing only Pacific SST in the model; however, the model could not reproduce the observed phase relationship between the AMO and the GMV. These results support the hypothesis that the Atlantic Ocean plays a key role in the multidecadal variability of global SST.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.