Abstract
BackgroundExposure to ambient particulate matter generated from coal-fired power plants induces long-term health consequences. However, epidemiologic studies have not yet focused on attributing these health burdens specifically to energy consumption, impeding targeted intervention policies. We hypothesize that the generating capacity of coal-fired power plants may be associated with lung cancer incidence at the national level.MethodsAge- and sex-adjusted lung cancer incidence from every country with electrical plants using coal as primary energy supply were followed from 2000 to 2016. We applied a Poisson regression longitudinal model, fitted using generalized estimating equations, to estimate the association between lung cancer incidence and per capita coal capacity, adjusting for various behavioral and demographic determinants and lag periods.ResultsThe average coal capacity increased by 1.43 times from 16.01 gigawatts (GW) (2000~2004) to 22.82 GW (2010~2016). With 1 kW (KW) increase of coal capacity per person in a country, the relative risk of lung cancer increases by a factor of 59% (95% CI = 7.0%~ 135%) among males and 85% (95% CI = 22%~ 182%) among females. Based on the model, we estimate a total of 1.37 (range = 1.34 ~ 1.40) million standardized incident cases from lung cancer will be associated with coal-fired power plants in 2025.ConclusionsThese analyses suggest an association between lung cancer incidence and increased reliance on coal for energy generation. Such data may be helpful in addressing a key policy question about the externality costs and estimates of the global disease burden from preventable lung cancer attributable to coal-fired power plants at the national level.
Highlights
Coal-fired power plants are the dominant source of energy production, yielding > 40% of global electrical power since the 1970s [1]
Most available estimates of health risk associated with electricity generation are oversimplified since they are calculated by multiplying a factor to air pollution levels without considering the heterogeneous compositions of particles from different sources
Falsification test To investigate the possibility that general health improvements correlated with coal capacity may obscure our lung-cancer results, we identify colorectal and anal cancer (CRC) as falsification outcomes
Summary
Coal-fired power plants are the dominant source of energy production, yielding > 40% of global electrical power since the 1970s [1]. Air pollutants emitted from coal power plants and their potential impact on population health have aroused widespread concerns; fine particulate matter (PM2.5) can cause both short-term and long-term adverse health outcomes [2,3,4]. Most available estimates of health risk associated with electricity generation are oversimplified since they are calculated by multiplying a factor to air pollution levels (either PM2.5 or PM10) without considering the heterogeneous compositions of particles from different sources (2019) 18:9. Exposure to ambient particulate matter generated from coal-fired power plants induces long-term health consequences. We hypothesize that the generating capacity of coal-fired power plants may be associated with lung cancer incidence at the national level
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.