Abstract
In this paper, we investigate a zero-forcing beamformer design with signed power-of-two coefficients for rural applications. In this design, the minimum user information rate is taken as the performance measure, while a practical system design constraint, the per-antenna power constraint, is imposed. The problem is formulated as a constrained zero-one integer programming problem. Based on a transform between two different integer spaces, the problem is transformed into an equivalent constrained integer programming problem. A global optimal two-stage design is proposed for solving the problem. In the first stage, a polynomial time quantization method is applied to obtain an initial design. In the second stage, an auxiliary function method is used to find the global optimal design. For illustration, numerical examples under several different scenarios are studied and the results are compared with those obtained by an existing method. Furthermore, the impact of the mutual interference terms in the performance measure is also studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.