Abstract

In this study, a global-ocean-data-assimilation system based on the three-dimensional variational (3DVAR) scheme is built for operational oceanography. The available observations include satellite altimetry; the satellite-measured sea-surface temperature (SST); and T/S profiles from Argo floats, which are assimilated to provide the initial condition of the global-ocean forecasting. The statistical analysis methods are designed to assess the performance of the data-assimilation scheme, and the results show that the analysis SST fields agree well with OSTIA and MGDSST, and the corresponding root-mean-square errors are, respectively, 0.523 and 0.548 °C. Moreover, the analysis sea-surface-height fields are well represented at the middle and low latitudes and have a slightly greater difference in the regions with strong mesoscale eddies. The variations in the vertical distribution of the forecasting temperature profiles resemble those of the GTS buoy observation. The forecasting salinity profiles correspond well to GTS observations, except with a weaker cold bias between the depths 100 and 200 m (about 0.2 PSU) at buoy station 2901494. Overall, our 3DVAR assimilation system plays a significant role in improving the accuracy of analysis and forecasting fields for operational oceanography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call