Abstract

The paper presents a new global modeling tool, Stratospheric Chemical Transport Model 2. It has been developed for effective three‐dimensional multiyear stratospheric chemistry studies, featuring an extensive chemistry scheme, heterogeneous processing on sulfate aerosols, and some polar stratospheric cloud processes. The transport algorithm maintains sub‐grid‐scale distributions and connects vertically the stratospheric layers, even in a coarse vertical grid. The model has been integrated for 49 months, recycling 1 year of precalculated transport from a middle atmosphere general circulation model. One year of daily National Centers for Environmental Prediction global analyses are used as temperatures. Diurnal cycles of photolysis rates are recalculated every 7 days to give interaction with ozone changes. The model is able to describe most of the geographical and seasonal ozone variability and the meridional distributions of ozone, reactive nitrogen, chlorine, and bromine. Stratospheric diurnal cycles for nitrogen, hydrogen, chlorine, and bromine species are captured in detail. The upper stratosphere ozone deficiency, typical to models, is large. Its sensitivity to different ways of tuning are explored. Midlatitude, rather than polar, wintertime processes have so far been the focus in this model tool. The present transport and grid resolution are not suited for realistic simulations at high latitudes. As there is only a limited inclusion of polar stratospheric cloud (PSC) microphysics, chemical processing in the cold polar lower stratosphere also cannot be well simulated. For example, the Antarctic ozone hole is not simulated, but the modeled chemistry should be suitable for warm Arctic winters when type II PSCs and particle sedimentation do not occur.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.