Abstract

Halogens in the atmosphere chemically destroy ozone. In the troposphere, bromine has higher ozone destruction efficiency than chlorine and is the halogen species with the widest geographical spread of natural sources. We investigate the relative strength of various sources of reactive tropospheric bromine and the influence of bromine on tropospheric chemistry using a 6-year simulation with the global chemistry transport model MOZART4. We consider the following sources: short-lived bromocarbons (CHBr3, CH2BrCl, CHBr2Cl, CHBrCl2, and CH2Br2) and CH3Br, bromine from airborne sea salt particles, and frost flowers and sea salt on or in the snowpack in polar regions. The total bromine emissions in our simulations add up to 31.7 Gmol(Br)/yr: 63 % from polar sources, 24.6 % from short-lived bromocarbons and 12.4 % from airborne sea salt particles. We conclude from our analysis that our global bromine emission is likely to be on the lower end of the range, because of too low emissions from airborne sea salt. Bromine chemistry has an effect on the oxidation capacity of the troposphere, not only due to its direct influence on ozone concentrations, but also by reactions with other key chemical species like HO x and NO x . Globally, the impact of bromine chemistry on tropospheric O3 is comparable to the impact of gas-phase sulfur chemistry, since the inclusion of bromine chemistry in MOZART4 leads to a decrease of the O3 burden in the troposphere by 6 Tg, while we get an increase by 5 Tg if gas-phase sulfur chemistry is switched off in the standard model. With decreased ozone burden, the simulated oxidizing capacity of the atmosphere decreases thus affecting species associated with the oxidation capacity of the atmosphere (CH3OOH, H2O2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.