Abstract

Accurate estimation of the state of health (SOH) of lithium-ion batteries holds significant importance in guaranteeing the stable and secure functioning of electric vehicles. However, existing neural network-based methods suffer from limitations in capturing long-term serial relationships and extracting degenerate features. In light of these challenges, we propose a novel sequence-free framework for performing the SOH estimation task. Technically, a global–local context embedding module is proposed to learn both global- and local-range information context by two convolutional streams with different depths. With this module, a discriminatory feature learning can be guided. By integrating it into the convolution neural network, a novel time series prediction network, called improved convolution neural network (ICNN) is presented, which can effectively establish the mapping relationship between battery charging/discharging curves and battery SOH. Through rigorous experimentation on the CACLE dataset and NASA dataset, we demonstrate the efficacy of our proposed method, achieving mean absolute errors (MAEs) of 0.54% and 1.20% respectively. Our findings highlight the superiority of the proposed method compared to commonly used neural network methods in the domain of battery SOH estimation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.