Abstract

Image restoration often requires the solution of large linear systems of equations with a very ill-conditioned, possibly singular, matrix and an error-contaminated right-hand side. The latter represents the available blur and noise-contaminated image, while the matrix models the blurring. Computation of a meaningful restoration of the available image requires the use of a regularization method. We consider the situation when the blurring matrix has a Kronecker product structure and an estimate of the norm of the desired image is available, and illustrate that efficient restoration of the available image can be achieved by Tikhonov regularization based on the global Lanczos method, and by using the connection of the latter to Gauss-type quadrature rules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.