Abstract

We describe a nonoverlapping domain decomposition algorithm for nonlinear porous media flows discretized with the multiscale mortar mixed finite element method. There are two main ideas: (1) linearize the global system in both subdomain and interface variables simultaneously to yield a single Newton iteration; and (2) algebraically eliminate subdomain velocities (and optionally, subdomain pressures) to solve linear systems for the 1st (or the 2nd) Schur complements. Solving the 1st Schur complement system gives the multiscale solution without the need to solve an interface iteration. Solving the 2nd Schur complement system gives a linear interface problem for a nonlinear model. The methods are less complex than a previously developed nonlinear mortar algorithm, which requires two nested Newton iterations and a forward difference approximation. Furthermore, efficient linear preconditioners can be applied to speed up the iteration. The methods are implemented in parallel, and a numerical study is performed to compare convergence behavior and parallel efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.