Abstract

The Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on board the Canadian SCISAT-1 satellite (launched in August 2003) measures over 30 different atmospheric species, including six nitrogen trace gases that are needed to quantify the stratospheric NOy budget. We combine volume mixing ratio (VMR) profiles for NO, NO2, HNO3, N2O5, ClONO2, and HNO4 to determine a zonally averaged NOy climatology on monthly and 3 month combined means (December–February, March–May, June–August, and September–November) at 5° latitude spacing and on 33 pressure surfaces. Peak NOy VMR concentrations (15–20 ppbv) are situated at about 3 hPa (∼40 km) in the tropics, while they are typically lower at about 10 hPa (∼30 km) in the midlatitudes. Mean NOy VMRs are similar in both the northern and southern polar regions, with the exception of large enhancements periodically observed in the upper stratosphere and lower mesosphere. These are primarily due to enhancements of NO due to energetic particle precipitation and downward transport. Other features in the NOy budget are related to descent in the polar vortex, heterogeneous chemistry, and denitrification processes. Comparison of the ACE-FTS NOy budget is made to both the Odin and ATMOS NOy data sets, showing in both cases a good level of agreement, such that relative differences are typically better than 20%. The NOy climatological products are available through the ACE website and are a supplement to the paper. - A middle-atmosphere NOy climatology has been produced using ACE-FTS measurements; - A robust method for quality controlling the input data has been developed - Good agreement is found between ACE-FTS NOy climatology and other climatologies

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call