Abstract
Global intermodal transportation involves the movement of shipments between inland terminals located in different continents by using ships, barges, trains, trucks, or any combination among them through integrated planning at a network level. One of the challenges faced by global operators is the matching of shipment requests with transport services in an integrated global network. The characteristics of the global intermodal shipment matching problem include acceptance and matching decisions, soft time windows, capacitated services, and transshipments between multimodal services. The objective of the problem is to maximize the total profits which consist of revenues, travel costs, transfer costs, storage costs, delay costs, and carbon tax. Travel time uncertainty has significant effects on the feasibility and profitability of matching plans. However, travel time uncertainty has not been considered in global intermodal transport yet leading to significant delays and infeasible transshipments. To fill in this gap, this paper proposes a chance-constrained programming model in which travel times are assumed stochastic. We conduct numerical experiments to validate the performance of the stochastic model in comparison to a deterministic model and a robust model. The experiment results show that the stochastic model outperforms the benchmarks in total profits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.