Abstract

In this paper, we propose an interconnect binding algorithm during high-level synthesis for global interconnect reduction. Our scheme is based on the observation that not all functional units (FUs) operate at all the time. When idle, FUs can be reconfigured as pass-through logic for data transfer, reducing interconnect requirement. Our algorithm formulates the interconnect reduction problem as a modified min-cost max-flow problem. It not only reduces the overall length of global interconnects but also minimizes the power overhead without introducing any timing violations. Experimental results show that, for a suite of digital processing benchmark circuits, our algorithm reduces global interconnects by 8.5% on the average in comparison to previously proposed schemes [6, 8]. It further lowers the overall design power by 4.8%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.