Abstract

Pipelines to recognize 3D objects despite clutter and occlusions usually end up with a final verification stage whereby recognition hypotheses are validated or dismissed based on how well they explain sensor measurements. Unlike previous work, we propose a Global Hypothesis Verification (GHV) approach which regards all hypotheses jointly so as to account for mutual interactions. GHV provides a principled framework to tackle the complexity of our visual world by leveraging on a plurality of recognition paradigms and cues. Accordingly, we present a 3D object recognition pipeline deploying both global and local 3D features as well as shape and color. Thereby, and facilitated by the robustness of the verification process, diverse object hypotheses can be gathered and weak hypotheses need not be suppressed too early to trade sensitivity for specificity. Experiments demonstrate the effectiveness of our proposal, which significantly improves over the state-of-art and attains ideal performance (no false negatives, no false positives) on three out of the six most relevant and challenging benchmark datasets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.