Abstract

With the ability to simulate historical and future global water availability on a monthly time step at a spatial resolution of 0.5 geographic degree, the Python package Xanthos version 1 provided a solid foundation for continuing advancements in global water dynamics science. The goal of Xanthos version 2 was to build upon previous investments by creating a Python framework where core components of the model (potential evapotranspiration (PET), runoff generation, and river routing) could be interchanged or extended without having to start from scratch. Xanthos 2 utilizes a component-style architecture which enables researchers to quickly incorporate and test cutting-edge research in a stable modeling environment prebuilt with diagnostics. Major advancements for Xanthos 2 were also achieved by the creation of a robust default configuration with a calibration module, hydropower modules, and new PET modules, which are now available to the scientific community.Funding statement: This research was supported by the U.S. Department of Energy, Office of Science, as part of research in Multi-Sector Dynamics, Earth and Environmental System Modeling Program. The Pacific Northwest National Laboratory is operated for DOE by Battelle Memorial Institute under contract DE-AC05-76RL01830. The views and opinions expressed in this paper are those of the authors alone.

Highlights

  • With the ability to simulate historical and future global water availability on a monthly time step at a spatial resolution of 0.5 geographic degree, the Python package Xanthos version 1 provided a solid foundation for continuing advancements in global water dynamics science

  • The goal of Xanthos version 2 was to build upon previous investments by creating a Python framework where core components of the model (potential evapotranspiration (PET), runoff generation, and river routing) could be interchanged or extended without having to start from scratch

  • Major advancements for Xanthos 2 were achieved by the creation of a robust default configuration with a calibration module, hydropower modules, and new Potential Evapotranspiration (PET) modules, which are available to the scientific community

Read more

Summary

SOFTWARE METAPAPER

The goal of Xanthos version 2 was to build upon previous investments by creating a Python framework where core components of the model (potential evapotranspiration (PET), runoff generation, and river routing) could be interchanged or extended without having to start from scratch. Xanthos 2 was built upon previous development by Li et al [10] by creating a Python framework where core components of the model (potential evapotranspiration (PET), runoff generation, and river routing) can be interchanged or extended without having to start from scratch. The following enhancements were made: improved water velocity considerations for the Modified River Transport Model (MRTM) routing module [14, 15], hydropower production assessment and potential capacity modules, and a built-in differential evolution optimization module to calibrate abcd parameters based on benchmark global runoff. Hargreaves-Samani Hargreaves Thornthwaite abcd Global Water Availability Model (GWAM) Modified River Transport Model (MRTM) Diagnostics Time Series Plotting Accessible Water Hydropower – Potential Hydropower – Actual

PET PET PET Runoff Runoff
Actual hydropower production
Software location Archive
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.