Abstract

AbstractWe present the first estimate of the full global ocean 13C Suess effect since preindustrial times, based on observations. This has been derived by first using the method of Olsen and Ninnemann (2010) to calculate 13C Suess effect estimates on sections spanning the world ocean, which were next mapped on a global 1° × 1° grid. We find a strong 13C Suess effect in the upper 1000 m of all basins, with strongest decrease in the subtropical gyres of the Northern Hemisphere, where δ13C of dissolved inorganic carbon has decreased by more than 0.8‰ since the industrial revolution. At greater depths, a significant 13C Suess effect can only be detected in the northern parts of the North Atlantic Ocean. The relationship between the 13C Suess effect and the concentration of anthropogenic carbon varies strongly between water masses, reflecting the degree to which source waters are equilibrated with the atmospheric 13C Suess effect before sinking. Finally, we estimate a global ocean inventory of anthropogenic CO2 of 92 ± 46 Gt C. This provides an estimate that is almost independent of and consistent, within the uncertainties, with previous estimates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.