Abstract

A global enhanced vibrational kinetic model (GEVKM) is developed for multitemperature, chemically reacting hydrogen plasmas in inductively coupled cylindrical discharges for lowto high-pressure regimes. The species in a GEVKM are ground-state hydrogen atoms H and molecules H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> , 14 vibrationally excited hydrogen molecules H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> (v), v = 1 - 14, electronically excited hydrogen atoms H(2) and H(3), groundstate positive ions H <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">+</sup> , H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">+</sup> , and H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">+</sup> , ground-state negative ions H <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-</sup> , and electrons e. The GEVKM involves volume-averaged steady-state continuity equations for the plasma species, an electron energy equation, a total energy equation, a heat transfer equation to the chamber walls, and a comprehensive set of surface and volumetric chemical processes governing vibrational and ionization kinetics of hydrogen plasmas. The GEVKM is verified and validated by comparisons with previous numerical simulations and experimental measurements of a negative hydrogen ion source in the low-pressure (20-100 mtorr), low-absorbed-power-density (0.053-0.32 W/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> ) regime and of a microwave plasma reactor in the intermediate to high-pressure (1-100 torr), high-absorbed-power-density (8.26-22 W/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> ) regime. The GEVKM is applied to the simulation of a high-current negative hydrogen ion source (HCNHIS). The HCNHIS consists of a high-pressure (20-65 torr) radio-frequency discharge chamber in which the main production of high-lying vibrational states of the hydrogen molecules occurs, a bypass system, and a low-pressure (0.1-0.4 torr) negative hydrogen ion production region where negative ions are generated by the dissociative attachment of low-energy electrons to rovibrationally excited hydrogen molecules. The discharge pressure and negative hydrogen ion current predicted by the GEVKM compare well with the measurements in the HCNHIS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.