Abstract

We introduce a novel global constraint for the total weighted completion time of activities on a single unary capacity resource. For propagating the constraint, we propose an O(n 4) algorithm which makes use of the preemptive mean busy time relaxation of the scheduling problem. The solution to this problem is used to test if an activity can start at each start time in its domain in solutions that respect the upper bound on the cost of the schedule. Empirical results show that the proposed global constraint significantly improves the performance of constraint-based approaches to single-machine scheduling for minimizing the total weighted completion time. We then apply the constraint to the multi-machine job shop scheduling problem with total weighted completion time. Our experiments show an order of magnitude reduction in search effort over the standard weighted-sum constraint and demonstrate that the way in which the job weights are associated with activities is important for performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.