Abstract

ABSTRACTIn order to evaluate the structural safety of the pressure vessel, it is necessary to consider the failure of the connection part, together with the cylindrical part in the middle and both ends, where the initial large deflection occurs. In this paper, local structural analysis for the pressure vessel considering the bolted part was carried out as well as global buckling analysis. That is, aluminium alloy and stainless steel pressure vessel models were designed for operating under high pressure equivalent to the water depth up to 2000 and 1000 m, respectively. Pressure vessel design procedure was performed by using empirical formulae and eigenvalue analysis by an FEM code. The results were verified and investigated by pressure tests in the hyperbaric chamber of KRISO. It was found that all the estimated results by the empirical formula and FEA are overestimated when the results are compared to the pressure test results in the pressure chamber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.