Abstract

In the year 2023, we have seen extraordinary extrema in high sea-surface temperature (SST) in the North Atlantic which are outside the 4-sigma envelope of the 1982-2011 daily timeseries. Here we take a first look at the large-scale, longer-term drivers of these extrema. Earth’s net global energy imbalance (in the 12 months up to September 2023) amounts to +1.9 W/m2 as part of a remarkably large upward trend, ensuring continuous heating of the ocean. However, the regional radiation budget over the North Atlantic does not show signs of a significant step increase from less negative aerosol forcing since 2020 as was suggested elsewhere. While the temperature in the top 100 m of the global ocean has been rising in all basins since about 1980, specifically the Atlantic basin has continued to further heat up since 2016. Similarly, salinity in the top 100 m of the ocean has increased in recent years specifically in the Atlantic basin. Outside the North Atlantic, around 2015 a substantial negative trend for sea-ice extent in the Southern Ocean has begun, leading to record low sea-ice extent in 2023. We suggest analysing the 2023 temperature extremes in the North Atlantic in the context of these recent global-scale ocean changes. Analysing climate and Earth System model simulations of the future, we find that the extreme SST in the North Atlantic and the extreme in Southern Ocean sea-ice extent in 2023 lie at the fringe of the expected mean climate change for a global surface-air temperature warming level (GWL) of 1.5°C, and closer to the average at a 3.0°C GWL. Understanding the regional and global drivers of these extremes is indispensable for assessing frequency and impacts of similar events in the coming years.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call