Abstract

Porous cuprous oxide nanospheres were deposited on reduced graphene oxide (pCu2O NS-rGO) by a solvothermal approach that uses hexadecyltrimethylammonium bromide as the capping agent and L-glutamic acid as the reducing agent. The nanomaterial was characterized by transmission electron microscopy, Raman spectroscopy, thermogravimetry, and electrochemical methods. A glassy carbon electrode was modified with pCu2O NS-rGO, and the respective electrode displays a well expressed oxidation peak for dopamine (DA) located at 160 mV (vs. SCE). It also gives a strong peak for uric acid (UA) which is separated from the DA peak by 130 mV (vs. SCE). No signals can be detected for ascorbic acid (AA) in concentrations up to 2.0 mM. The findings are exploited in a method for simultaneous determination of UA and DA. The linear ranges are from 1.0 to 138 μM for UA, and from 0.05 to 109 μM for DA even in the presence of relatively high concentrations of AA. The detection limits are 112 nM for UA and 15 nM for DA (at an S/N ratio of 3).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.