Abstract

This paper presents a novel method using UV epoxy resin for the bonding of glass blanks and patterned plates at room temperature. There is no need to use a high-temperature thermal fusion process and therefore avoid damaging temperature-sensitive metals in a microchip. The proposed technique has the further advantage that the sealed glass blanks and patterned plates can be separated by the application of adequate heat. In this way, the microchip can be opened, the fouling microchannels may be easily cleaned-up and the plates then re-bonded to recycle the microchip. The proposed sealing method is used to bond a microfluidic device, and the bonding strength is then investigated in a series of chemical resistance tests conducted in various chemicals. Leakage of solution was evaluated in a microfluidic chip using pressure testing to 1.792 × 102 kPa (26 psi), and the microchannel had no observable leak. Electrical leakage between channels was tested by comparing the resistances of two bonding methods, and the result shows no significant electrical leakage. The performance of the device obtained from the proposed bonding method is compared with that of the thermal fusion bonding technique for an identical microfluidic device. It is found that identical results are obtained under the same operating conditions. The proposed method provides a simple, quick and inexpensive method for sealing glass microfluidic chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.