Abstract

BackgroundMany inherited polyneuropathies (PN) observed in dogs have clinical similarities to the genetically heterogeneous group of Charcot-Marie-Tooth (CMT) peripheral neuropathies in humans. The canine disorders collectively show a variable expression of progressive clinical signs and ages of onset, and different breed prevalences. Previously in the Leonberger breed, a variant highly associated with a juvenile-onset PN was identified in the canine orthologue of a CMT-associated gene. As this deletion in ARHGEF10 (termed LPN1) does not explain all cases, PN in this breed may encompass variants in several genes with similar clinical and histopathological features.ResultsA genome-wide comparison of 173 k SNP genotypes of 176 cases, excluding dogs homozygous for the ARHGEF10 variant, and 138 controls, was carried out to detect further PN-associated variants. A single suggestive significant association signal on CFA15 was found. The genome of a PN-affected Leonberger homozygous for the associated haplotype was sequenced and variants in the 7.7 Mb sized critical interval were identified. These variants were filtered against a database of variants observed in 202 genomes of various dog breeds and 3 wolves, and 6 private variants in protein-coding genes, all in complete linkage disequilibrium, plus 92 non-coding variants were revealed. Five of the coding variants were predicted to have low or moderate effect on the encoded protein, whereas a 2 bp deletion in GJA9 results in a frameshift of high impact. GJA9 encodes connexin 59, a connexin gap junction family protein, and belongs to a group of CMT-associated genes that have emerged as important components of peripheral myelinated nerve fibers. The association between the GJA9 variant and PN was confirmed in an independent cohort of 296 cases and 312 controls. Population studies showed a dominant mode of inheritance, an average age of onset of approximately 6 years, and incomplete penetrance.ConclusionsThis GJA9 variant represents a highly probable candidate variant for another form of PN in Leonberger dogs, which we have designated LPN2, and a new candidate gene for CMT disease. To date, approximately every third PN-diagnosed Leonberger dog can be explained by the ARHGEF10 or GJA9 variants, and we assume that additional genetic heterogeneity in this condition exists in the breed.

Highlights

  • Many inherited polyneuropathies (PN) observed in dogs have clinical similarities to the genetically heterogeneous group of Charcot-Marie-Tooth (CMT) peripheral neuropathies in humans

  • 30 years ago it was already speculated that some forms of canine PN represent inherited diseases [2]. This was recently confirmed by unraveling causative recessive variants in the canine orthologue of a human CMT-associated gene (NDRG1) in Greyhounds [6] and Alaskan Malamute dogs [7] with early-onset PN (OMIA 001292–9615)

  • All dogs were genotyped for an ARHGEF10 deletion as previously described [11], and only dogs that were homozygous wild type or heterozygous for the ARHGEF10 allele were selected for genotyping on the Single nucleotide polymorphism (SNP) arrays

Read more

Summary

Introduction

Many inherited polyneuropathies (PN) observed in dogs have clinical similarities to the genetically heterogeneous group of Charcot-Marie-Tooth (CMT) peripheral neuropathies in humans. In the Leonberger breed, a variant highly associated with a juvenile-onset PN was identified in the canine orthologue of a CMT-associated gene. As this deletion in ARHGEF10 (termed LPN1) does not explain all cases, PN in this breed may encompass variants in several genes with similar clinical and histopathological features. 30 years ago it was already speculated that some forms of canine PN represent inherited diseases [2] This was recently confirmed by unraveling causative recessive variants in the canine orthologue of a human CMT-associated gene (NDRG1) in Greyhounds [6] and Alaskan Malamute dogs [7] with early-onset PN (OMIA 001292–9615). RAB3GAP1-associated forms of syndromic PN accompanied by ocular abnormalities and neuronal vacuolation (OMIA 001970–9615) were described independently in Black Russian Terriers [8], Rottweilers [9] and Alaskan Husky dogs [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.