Abstract

In recent years, there has been a fast growing interest in the space–time data processing capacity of Geographic Information Systems (GIS). In this paper we present a new GIS-based tool for advanced geostatistical analysis of space–time data; it combines stochastic analysis, prediction, and GIS visualization technology. The proposed toolbox is based on the Bayesian Maximum Entropy theory that formulates its approach under a mature knowledge synthesis framework. We exhibit the toolbox features and use it for particulate matter spatiotemporal mapping in Taipei, in a proof-of-concept study where the serious preferential sampling issue is present. The proposed toolbox enables tight coupling of advanced spatiotemporal analysis functions with a GIS environment, i.e. QGIS. As a result, our contribution leads to a more seamless interaction between spatiotemporal analysis tools and GIS built-in functions; and utterly enhances the functionality of GIS software as a comprehensive knowledge processing and dissemination platform.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.