Abstract
In this paper, we propose a novel Gibbs-INLA algorithm for the Bayesian inference of graded response models with ordinal response based on multidimensional item response theory. With the combination of the Gibbs sampling and the integrated nested Laplace approximation (INLA), the new framework avoids the cumbersome tuning which is inevitable in classical Markov chain Monte Carlo (MCMC) algorithm, and has low computing memory, high computational efficiency with much fewer iterations, and still achieve higher estimation accuracy. Therefore, it has the ability to handle large amount of multidimensional response data with different item responses. Simulation studies are conducted to compare with the Metroplis-Hastings Robbins-Monro (MH-RM) algorithm and an application to the study of the IPIP-NEO personality inventory data is given to assess the performance of the new algorithm. Extensions of the proposed algorithm for application on more complicated models and different data types are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The British journal of mathematical and statistical psychology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.