Abstract

BackgroundFlower load in peach is an important determinant of final fruit quality and is subjected to cost-effective agronomical practices, such as the thinning, to finely balance the sink-source relationships within the tree and drive the optimal amount of assimilates to the fruits. Floral transition in peach buds occurs as a result of the integration of specific environmental signals, such as light and temperature, into the endogenous pathways that induce the meristem to pass from vegetative to reproductive growth. The cross talk and integration of the different players, such as the genes and the hormones, are still partially unknown. In the present research, transcriptomics and hormone profiling were applied on bud samples at different developmental stages. A gibberellin treatment was used as a tool to identify the different phases of floral transition and characterize the bud sensitivity to gibberellins in terms of inhibition of floral transition.ResultsTreatments with gibberellins showed different efficacies and pointed out a timeframe of maximum inhibition of floral transition in peach buds. Contextually, APETALA1 gene expression was shown to be a reliable marker of gibberellin efficacy in controlling this process. RNA-Seq transcriptomic analyses allowed to identify specific genes dealing with ROS, cell cycle, T6P, floral induction control and other processes, which are correlated with the bud sensitivity to gibberellins and possibly involved in bud development during its transition to the reproductive stage. Transcriptomic data integrated with the quantification of the main bioactive hormones in the bud allowed to identify the main hormonal regulators of floral transition in peach, with a pivotal role played by endogenous gibberellins and cytokinins.ConclusionsThe peach bud undergoes different levels of receptivity to gibberellin inhibition. The stage with maximum responsiveness corresponded to a transcriptional and hormonal crossroad, involving both flowering inhibitors and inductors. Endogenous gibberellin levels increased only at the latest developmental stage, when floral transition was already partially achieved, and the bud was less sensitive to exogenous treatments. A physiological model summarizes the main findings and suggests new research ideas to improve our knowledge about floral transition in peach.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call