Abstract
Although several causal genes of familial myelodysplastic syndromes (MDS) have been identified, the genetic landscape and the molecular pathogenesis are not totally understood. To explore novel driver genes and their pathogenetic significance, we performed whole-exome sequence analysis of four individuals from a familial MDS pedigree and 10 candidate single-nucleotide variants (C9orf43, CYP7B1, EFHB, ENTPD7, FAM160B2, HELZ2, HLTF, INPP5J, ITPKB, and RYK) were identified. Knockdown screening revealed that Hltf downregulation enhanced colony-forming capacity of primary murine bone marrow (BM) stem/progenitor cells. γH2AX immunofluorescent staining assay revealed increased DNA damage in a human acute myeloid leukemia (AML) cell line ectopically expressing HLTF E259K, which was not observed in cells expressing wild-type HLTF. Silencing of HLTF in human AML cells also led to DNA damage, indicating that HLTF E259K is a loss-of-function mutation. Molecularly, we found that an E259K mutation reduced the binding capacity of HLTF with ubiquitin-conjugating enzymes, methanesulfonate sensitive 2 and ubiquitin-conjugating enzyme E2N, resulting in impaired polyubiquitination of proliferating cell nuclear antigen (PCNA) in HLTF E259K-transduced cells. In summary, our results indicate that a familial MDS-associated HLTF E259K germline mutation induces accumulation of DNA double-strand breaks, possibly through impaired PCNA polyubiquitination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.