Abstract

Modern superconducting quantum interference device (SQUID) magnetometers enable fully automated measurements with currently unmatched sensitivity. The measured moment values are, however, prone to deviations from their actual value due to geometric effects, namely sample size, shape, and radial offset. The current procedure to correct these geometric effects, for the magnetic property measurement 3 (MPMS3) magnetometer, is based on an available simulation tool, valid for both SQUID-VSM and DC-scan methods. Still, determining the correction factor requires samples with well-defined geometric shapes together with accurate sample dimensions and the usually difficult to determine radial offset. There is no established solution to correct geometry effects of irregularly shaped samples or unknown radial offsets. In this work, we find a systematic relation between the difference of SQUID-VSM and DC-scan measurements and their corresponding correction factors for the MPMS3. This relation follows a clear trend, independent of sample geometry and radial offset, for a given pair of DC-scan length and SQUID-VSM amplitude values. Exploiting this trend, a geometry-independent correction method is presented and validated by measurements of two different geometries of the same Al piece, two different radial offsets of a Ni square, and metallic Fe powder using a far from optimal sample mounting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.