Abstract

Considering the three-dimensional (3D) trajectory, 3D antenna array, and 3D beamforming of unmanned aerial vehicle (UAV), a novel non-stationary millimeter wave (mmWave) geometry-based stochastic model for UAV to vehicle communication channels is proposed. Based on the analysis results of measured and ray tracing simulation data of UAV mmWave communication links, the proposed parametric channel model is constructed by a line-of-sight path, a ground specular path, and two strongest single-bounce paths. Meanwhile, a new parameter computation method is also developed, which is divided into the deterministic (or geometry-based) part and the random (or empirical) part. The simulated power delay profile and power angle profile demonstrate that the statistical properties of proposed channel model are time-variant with respect to the scattering scenarios, positions and beam direction. Moreover, the simulation results of autocorrelation functions fit well with the theoretical ones as well as the measured ones.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.