Abstract
The development of the Internet, together with the progress of multimedia processing techniques, has led to the problems of data piracy, data tampering and illegal dissemination. Digital watermarking is an effective approach to data authentication and copyright protection. This paper proposes a geometrically robust multi-bit video watermarking algorithm based on 2-D DFT (two-dimensional discrete Fourier transform). While most of the existing video watermarking schemes require synchronization to extract the watermark from rotated or scaled videos, which is time-consuming and affects the accuracy, the proposed method can do direct extraction without performing synchronization for videos attacked by rotation, scaling or cropping. For embedding the watermark, circular templates in DFT domain are transformed into spatial masks and added to the video frames in spatial domain. A perceptual model based on local contrast is applied to keep the fidelity of the watermarked video. We also propose an accurate and efficient extraction method which is based on the cross-correlation between the Wiener-filtered DFT magnitude and the stretched template sequence in polar coordinates. Experimental results show that the proposed algorithm is robust against various kinds of attacks, such as compression, filtering, rotation, scaling, cropping, frame averaging and frame rate changing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.