Abstract

An axisymmetric finite element is developed which includes such features as orthotropic material properties, doubly curved geometry, and both the first and second order nonlinear stiffness terms. This element can be used to predict the equilibrium state of an axisymmetric shell structure with geometrically nonlinear large displacements. Small amplitude vibration analysis can then be performed based on this equilibrium state. The nonlinear path is predicted by using the self-correcting incremental procedure and any point on the path can be checked by using the Newton-Raphson iterative scheme. The present formulation and solution procedure are evaluated by analyzing a series of examples with results compared with alternative known solutions. Examples include: free vibration of an isotropic cylindrical shell, a conical frustum, and an orthotropic cylindrical shell; buckling of a cylindrical shell; large deflection of a clamped disk, a spherical cap, and a steel belted radial tire. The final example is a free vibration analysis of the inflated tire and the natural frequencies obtained compared well with published experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.