Abstract

We investigate discretizations of a geometrically nonlinear elastic Cosserat shell with nonplanar reference configuration originally introduced by Bîrsan, Ghiba, Martin, and Neff in 2019. The shell model includes curvature terms up to order 5 in the shell thickness, which are crucial to reliably simulate high-curvature deformations such as near-folds or creases. The original model is generalized to shells that are not homeomorphic to a subset of R2. For this, we replace the originally planar parameter domain by an abstract two-dimensional manifold, and verify that the hyperelastic shell energy and three-dimensional reconstruction are invariant under changes of the local coordinate systems. This general approach allows to determine the elastic response for even non-orientable surfaces like the Möbius strip and the Klein bottle. We discretize the model with a geometric finite element method and, using that geometric finite elements are H1-conforming, prove that the discrete shell model has a solution. Numerical tests then show the general performance and versatility of the model and discretization method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.