Abstract

A geometrically nonlinear (3,2) unified zigzag beam element is developed with a reduced number of degree-of-freedom for the large deformation analysis. The main merit of the beam element model is the Kirchhoff and Cauchy shear stress solution for large deformation and large strain analysis is more accurate. The geometrically nonlinearity is considered in the calculation of the zigzag coefficients. Thus, the results of shear Cauchy stress are matching well with solid element analysis in case of the beam with aspect ratio greater than 20 under large deformation. The zigzag coefficients are derived explicitly. The Green strain and the second Piola Kirchhoff stress are used. The second Piola Kirchhoff shear stress is continuous at the interface between adjacent layers priori. The bottom surface second Piola Kirchhoff shear stress condition is used to determine the zigzag coefficient and the top surface second Piola Kirchhoff shear stress condition is used to reduce one degree-of-freedom. The nonlinear finite element equations are derived. In the numerical tests, several benchmark problems with large deformation are solved to verify the accuracy. It is observed that the proposed beam has accurate solution for beam with aspect ratio greater than 20. The second Piola Kirchhoff and Cauchy shear stress accuracy is also good. A convergence study is also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call