Abstract

Shrinkage estimation has become a basic tool in the analysis of high-dimensional data. Historically and conceptually a key development toward this was the discovery of the inadmissibility of the usual estimator of a multivariate normal mean. This article develops a geometrical explanation for this inadmissibility. By exploiting the spherical symmetry of the problem it is possible to effectively conceptualize the multidimensional setting in a two-dimensional framework that can be easily plotted and geometrically analyzed. We begin with the heuristic explanation for inadmissibility that was given by Stein [In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954--1955, Vol. I (1956) 197--206, Univ. California Press]. Some geometric figures are included to make this reasoning more tangible. It is also explained why Stein's argument falls short of yielding a proof of inadmissibility, even when the dimension, $p$, is much larger than $p=3$. We then extend the geometric idea to yield increasingly persuasive arguments for inadmissibility when $p\geq3$, albeit at the cost of increased geometric and computational detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.