Abstract

Many signals of interest can be characterized by a finite number of parameters per unit of time. Instead of spanning a single linear space, these signals often lie on a union of spaces. Under this setting, traditional sampling schemes are either inapplicable or very inefficient. We present a framework for sampling these signals based on an injective projection operator, which flattens the signals down to a common low dimensional representation space while still preserving all the information. Standard sampling procedures can then be applied on that space. We show the necessary and sufficient conditions for such operators to exist and provide the minimum sampling rate for the representation space, which indicates the efficiency of this framework. These results provide a new perspective on the sampling of signals with finite rate of innovation and can serve as a guideline for designing new algorithms for a class of problems in signal processing and communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.