Abstract
In this article we present a new approach to compute an approximate least common multiple (LCM) and an approximate greatest common divisor (GCD) of two multivariate polynomials. This approach uses the geometrical notion of principal angles whereas the main computational tools are the Implicitly Restarted Arnoldi method and sparse QR decomposition. Upper and lower bounds are derived for the largest and smallest singular values of the highly structured Macaulay matrix. This leads to an upper bound on its condition number and an upper bound on the 2-norm of the product of two multivariate polynomials. Numerical examples are provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.