Abstract
A geometrical theory for the time-evolution of strain localization (flow-localization) is discussed. The purpose is to obtain a reduction of the continuum mechanical problem of time-evolution of deformation to one involving few scalar invariants rather than the full field variables and thereby obtain a 'particle-like' description of the evolving localization zones. The present paper deals with these issues on cases restricted to those of planar deformation. Several concepts are introduced in the description, such as path-continuity, stable and unstable localization, width of localization zones, uncertainties in the description of time evolution of localization, coherent and non-coherent flow localization. Simulation results for the high-rate planar extension with rectangular elastic-viscoplastic blocks are used to demonstrate several of the theoretical concepts used. A fully non-linear formulation of the continuum mechanical problem is used accounting for finite deformations as well as irreversible elastic-viscoplastic material behavior. Several characteristic localization phenomena are observed in the simulations such as branching of the critical path of the impact wave, multiple neck formation and elastic-plastic wave interaction. (Less)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.