Abstract

A unified geometric formulation of the methods used for solving constrained system problems is given. Both holonomic and nonholonomic systems are treated in like manner, and the dynamic equations are expressible in either generalized velocities or quasi-velocities. Moreover, a wide range of ’unconstrained‘ systems are uniformly regarded as generalized particles in the multi-dimensional metric spaces relating to their configuration. The derivation is grounded on the tensor calculus formalism and appropriate geometric interpretations are reported. In its useful matrix form, the formulation turns out short, elementary and general. This unified geometric approach to constrained system dynamics may deserve to become a generally accepted method inacademic and engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.