Abstract

We develop a qualitative geometric approach to swimming at low Reynolds numbers which avoids solving differential equations and uses instead landscape figures describing the swimming and dissipation. This approach gives complete information about swimmers that swim on a line without rotations and gives the main qualitative features of general swimmers that can also rotate. We illustrate this approach for a symmetric version of Purcell's swimmer, which we solve by elementary analytical means within slender body theory. We then apply the theory to derive the basic qualitative properties of Purcell's swimmer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.